Redland Tech Center Rockville, MD

Redland Tech Center

Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Project Overview

- Two office buildings with stand alone parking garage
- Building II: 9 levels; 210,240 SF
- Building III: 6 levels; 136,430 SF
- Parking Garage: 6 levels; 310,600 SF
- January 2008 June 2009 Construction
- \$52,800,000 Negotiated GMP
- Design-Bid-Build

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgement

Redland Tech Center

Project Overview

- Structural steel office buildings
- Precast facade with curtain wall and ribbon windows
- Self-contained air conditioning units with VAVs
- Precast parking garage
- LEED Silver Certification

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Critical Industry Research: Chilled Beams

- Energy efficiency becoming more important
- Water more efficient energy transporter
- Reduce ductwork, fans, AHUs, VAVs, plenum space
- Increase piping, pumping
- Two types: Passive and Active
- Used in Europe and Australia for several decades

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Passive Chilled Beams

- Use natural convection to cool air
- Only provide sensible cooling
- Cannot be used for heating
- Requires separate system for latent loads and ventilation
- 200-650BTUH sensible heat per ft of beam
- Exposed or recessed type

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Active Chilled Beams

- Forced air induction
- Primary air and secondary cooling
- Used for cooling and heating
- 1,100 BTUH sensible heat per ft of beam
- Typically used with dedicated outdoor air system (DOAS)
- Several varieties to suit building requirements

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Multi-service Chilled Beams

- Prefabricated unit
- Incorporates other building systems
- Both passive and active types

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Advantages

- Reduce primary air by 75-85%
- 20-40% savings in energy consumption
- Reduced ductwork size
- Low maintenance
- Increased room comfort; quiet
- Payback less than 5 years typical

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Asknowledgement

Redland Tech Center

Chilled Beam Disadvantages

- Initial cost higher
- Not familiar in United States
- Cannot be used in areas with high or unpredictable humidity levels

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Applications

- Best for projects with high sensible loads
- Retrofit and renovation projects
- Projects with building heightt restrictions
- Projects with ultimate sustainability goals

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations
- Owner the man and Alabaman de decomposite

Redland Tech Center

Chilled Beams at RTC Building II

- Analysis uses active chilled beams
- Used chilled beams only in open office space
- Maximized energy efficiency by matching primary air to ventilation air requirements
- Analysis assumptions:
 - 100 ft²/person
 - Current design used 72°F room air, 55°F supply air
 - Latent load = 200 BTUH/person

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

Chilled Beams at RTC Building II

- Analysis uses active chilled beams
- Used chilled beams only in open office space
- Maximized energy efficiency by matching primary air to ventilation air requirements
- Analysis assumptions:
 - 100 ft²/person
 - Current design used 72°F room air, 55°F supply air
 - Latent load = 200 BTUH/person

Floor	Description	Area (SF)	Population	VAV CFM	Sensible Load (BTUH)	Latent Load (BTUH)	Requirement (CFM)
1	Open Office	11,380	114	9,500	174,420	22,760	1,565
2	Open Office	19,862	199	12,000	220,320	39,724	2,731
3	Open Office	20,534	205	12,000	220,320	41,068	2,823
4	Open Office	20,534	205	12,000	220,320	41,068	2,823
5	Open Office	20,534	205	12,000	220,320	41,068	2,823
6	Open Office	20,534	205	12,000	220,320	41,068	2,823
7	Open Office	20,534	205	12,000	220,320	41,068	2,823
8	Open Office	20,534	205	12,000	220,320	41,068	2,823
9	Open Office	20,534	205	12,000	220,320	41,068	2,823

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendation

Redland Tech Center

Number of Chilled Beams Required

- Room air: 72°F/50% relative humidity (0.00836lb_w/lb_{da})
- Supply air: 55°F/58% relative humidity (0.00535lb_w/lb_{da})
- Analysis used 1,000 BTUH sensible heat per ft of beam
- Based on 6' chilled beams

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgement

Redland Tech Center

Number of Chilled Beams Required

- Room air: 72°F/50% relative humidity (0.00836lb_w/lb_{da})
- Supply air: 55°F/58% relative humidity (0.00535lb_w/lb_{da})
- Analysis used 1,000 BTUH sensible heat per ft of beam
- Based on 6' chilled beams

Floor	Total Sensible Load (BTUH)	Sensible Capacity (BTUH)	Sensible % of Total	Sensible Capacity (BTUH)	Sensible % of Total
1	174,420	28,729	16.5%	145,691	83.5%
2	220,320	50,142	22.8%	170,178	77.2%
3	220,320	51,838	23.5%	168,482	76.5%
4	220,320	51,838	23.5%	168,482	76.5%
5	220,320	51,838	23.5%	168,482	76.5%
6	220,320	51,838	23.5%	168,482	76.5%
7	220,320	51,838	23.5%	168,482	76.5%
8	220,320	51,838	23.5%	168,482	76.5%
9	220,320	51,838	23.5%	168,482	76.5%

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations
- conclusion and necommendations

Redland Tech Center

Number of Chilled Beams Required

- Room air: 72°F/50% relative humidity (0.00836lb_w/lb_{da})
- Supply air: 55°F/58% relative humidity (0.00535lb_w/lb_{da})
- Analysis used 1,000 BTUH sensible heat per ft of beam
- Based on 6' chilled beams

Floor	Secondary Sensible Capacity (BTUH)	Linear Feet of Chilled Beam Required	Number of 6' Chilled Beams
1	145,691	146	25
2	170,178	170	29
3	168,482	168	29
4	168,482	168	29
5	168,482	168	29
6	168,482	168	29
7	168,482	168	29
8	168,482	168	29
9	168,482	168	29
		Total Number of 6' Beams	257

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Costs

- Material cost for chilled beams is \$140 per linear foot
- Material cost for chilled beams is \$140 per linear foot
- Each 6' beam will cost \$1,680 installed

Floor	Number of 6' Chilled Beams	Material Cost	Labor Cost	Total Cost
1	25	\$21,000	\$21,000	\$42,000
2	29	\$24,360	\$24,360	\$48,720
3	29	\$24,360	\$24,360	\$48,720
4	29	\$24,360	\$24,360	\$48,720
5	29	\$24,360	\$24,360	\$48,720
6	29	\$24,360	\$24,360	\$48,720
7	29	\$24,360	\$24,360	\$48,720
8	29	\$24,360	\$24,360	\$48,720
9	29	\$24,360	\$24,360	\$48,720
		Total Chilled	Beam Cost	\$431,760
		Chilled Beam Cost per SF		\$2.47

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Owner the second Aller and a decrease the

Redland Tech Center

Description	Material	Labor	Total	% of Total	
Chilled Water Piping	\$116,601	\$66,159	\$182,760	7.6%	
Mechanical Insulation	\$58,998	\$76,002	\$135,000	5.6%	
Pumps	\$20,004	\$3,558	\$23,562	1.0%	
Cooling Towers	\$205,775	\$16,325	\$222,100	9.2%	
VAVs	\$37,088	\$8,212	\$45,300	1.9%	
Fans	\$79,100	\$7,413	\$86,513	3.6%	
Self Contained AHUs	\$790,242	\$38,183	\$828,425	34.5%	
Ductwork	\$97,290	\$607,710	\$705,000	29.3%	
Controls	\$86,670	\$48,330	\$135,000	5.6%	
Condensate Piping	\$9,412	\$13,488	\$22,900	1.0%	
Testing and Balancing	\$0	\$18,000	\$18,000	0.7%	
Totals	\$1,501,178	\$903,382	\$2,404,560	100.0%	
VAV Mechanical System Cost per SF = \$11.44					

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Component Costs

- Chilled water piping
 - Material: \$8.94/lf *1,300lf/floor*9floors = \$104,598
 - Labor: \$5.06/If *1,300If/floor*9floors = \$59,202
 - Total Additional Cost: \$163,800
- Mechanical Insulation
 - No change

Pumps

- Material: \$20,004*2 = \$40,008
- Labor: \$3,558*2 = \$7,116
- Total Additional Cost: \$47,124
- Cooling Tower
 - No change

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Component Costs

- VAVs
 - Material: 72VAVs*\$442/VAV = \$31,824
 - Labor: 72VAVs*\$442/VAV = \$31,824
 - Total Savings: **\$38,808**
- Fans
 - Material: 0.7*0.92*\$79,100 = \$50,940
 - Labor: 0.7*0.92*\$7,413 = \$4,774
 - Total Savings: \$55,714

• SCUs

Material: \$790,242

• Labor: \$38,183

• Total Savings: \$828,425

Electric Heating Coils

• Material: 257coils*\$620/coil = \$159,340

• Labor: 257coils*\$59/coil = \$15,163

• Total Additional Cost: \$174.503

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Component Costs

- Wiring and Conduit for Heating Coils
 - Material: 3-wires*\$0.81/LF*650LF/floor*9floors = \$14,217
 - Labor: \$2.47/LF*650LF/floor*9floors = \$14,450
 - Total Additional Cost: \$28,667
- Centrifugal Chillers
 - Material: \$384,160
 - Labor: \$384,160
 - Total Additional Cost: \$402,192

Shawn Pepple • Construction Management • April 14, 2009

AHUs

- Material: \$46,592
- Labor: \$7,056
- Total Additional Cost: \$53,648

Ductwork

- Material: 0.45*0.92*\$97,290 = \$40,278
- Labor: 0.25*0.92*\$607,710 = \$137,773
- Total Savings: \$178,051

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Component Costs

- Controls
 - Material: 0.92*\$86,670 = \$79,736
 - Labor: 0.92*\$48,330 = **\$44,464**
 - Total Savings: **\$124,200**
- Condensate Piping
 - No change

Testing and Balancing

• Material: \$0

• Labor: \$124,200

• Total Savings: **\$16,560**

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

Description	Material	Labor	Total	% of Total	
Chilled Beams	\$215,880	\$215,880	\$431,760	17.4%	
Chilled Water Piping	\$221,199	\$125,361	\$346,560	14.0%	
Mechanical Insulation	\$58,998	\$76,002	\$135,000	5.4%	
Pumps	\$60,012	\$10,674	\$70,686	2.9%	
Cooling Towers	\$205,775	\$16,325	\$222,100	9.0%	
VAVs	\$5,264	\$1,228	\$6,492	0.3%	
Fans	\$28,160	\$2,639	\$30,799	1.2%	
Self Contained AHUs	\$0	\$0	\$0	0.0%	
Electric Heating Coils	\$159,340	\$15,163	\$174,503	7.0%	
Wiring and Conduit for Heating Coils	\$14,217	\$14,450	\$28,667	1.2%	
Centrifugal Chiller	\$384,160	\$18,032	\$402,192	16.2%	
AHUs	\$46,592	\$7,056	\$53,648	2.2%	
Ductwork	\$57,012	\$469,937	\$526,949	21.3%	
Controls	\$6,934	\$3,866	\$10,800	0.4%	
Condensate Piping	\$9,412	\$13,488	\$22,900	0.9%	
Testing and Balancing	\$0	\$16,560	\$16,560	0.7%	
Totals	\$1,472,954	\$1,006,662	\$2,479,616	100%	
Chilled Beam Mechanical System Cost per SF = \$11,79					

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

	Chilled Beam Mecha	inical System Cost per SF = \$1	1.79	
Totals	\$1,472,954	\$1,006,662	\$2,479,616	100%
Testing and Balancing	\$0	\$16,560	\$16,560	0.7%
Condensate Piping	\$9,412	\$13,488	\$22,900	0.9%
Controls	\$6,934	\$3,866	\$10,800	0.4%
Ductwork	\$57,012	\$469,937	\$526,949	21.3%
AHUs	\$46,592	\$7,056	\$53,648	2.2%
Centrifugal Chiller	\$384,160	\$18,032	\$402,192	16.2%
Wiring and Conduit for Heating Coils	\$14,217	\$14,450	\$28,667	1.2%
Electric Heating Coils	\$159,340	\$15,163	\$174,503	7.0%
Self Contained AHUs	\$0	\$0	\$0	0.0%
Fans	\$28,160	\$2,639	\$30,799	1.2%
VAVs	\$5,264	\$1,228	\$6,492	0.3%
Cooling Towers	\$205,775	\$16,325	\$222,100	9.0%
Pumps	\$60,012	\$10,674	\$70,686	2.9%
Mechanical Insulation	\$58,998	\$76,002	\$135,000	5.4%
Chilled Water Piping	\$221,199	\$125,361	\$346,560	14.0%
Chilled Beams	\$215,880	\$215,880	\$431,760	17.4%
Description	material	Labor	Total	76 OF TOTAL

VAV Cost	Chilled Beam Cost	Cost Increase	% Increase	
\$2,404,560	\$2,479,616	\$75,056	1.03	

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Additional Office Space w/ Chilled Beams

- Removed SCUs add office space for floors 2-7
- 360SF/floor
- 2,160SF additional office space
- Office space will lease for \$12/SF/month
- Additional leasing income of \$25,290/month

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Chilled Beam Schedule Impacts

- Original Schedule:
 - June 9, 2009 February 10, 2009
 - 246 days
- Chilled Beam Schedule:
 - June 9, 2009 March 19, 2009
 - 283 days
- Overall Project Schedule:
 - No change

The standard of the standard o

Chilled Beam Schedule

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendation
- Questions and Acknowledgement

Redland Tech Center

Energy Savings

- EPA estimates annual HVAC energy cost/SF for Mid-Atlantic area office building to be \$1.59/SF
- Annual HAVC Cost = \$1.59/SF*210,240SF = \$334,282 per year

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Energy Savings

- EPA estimates annual HVAC energy cost/SF for Mid-Atlantic area office building to be \$1.59/SF
- Annual HAVC Cost = \$1.59/SF*210,240SF = \$334,282 per year

Energy Reduction	HVAC Energy Costs per Year	Savings per Year
20%	\$267,426	\$66,856
30%	\$233,997	\$100,285
40%	\$200,569	\$133,713

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendation

Redland Tech Center

Payback Period

- Additional cost of \$75,056 (1.03% increase)
- Savings between \$66,856 and \$133,713 in energy costs
- Additional \$311,040/year in office leasing revenue
- Less than 1 year payback

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Conclusion

- Initial cost increase of \$75,056 (1.03%)
- VAV system cost = \$2,404,560 = \$11.44/SF
- Chilled beam system cost = \$2,479,616 = \$11.79/SF
- Lower operating costs, higher revenues offset higher initial cost with less than 1 year payback
- Chilled beams increased HVAC construction duration by 37 days
- Overall project schedule not affected
- Chilled beams unfamiliar to industry professionals in United States

Shawn Pepple • Construction Management • April 14, 2009

Recommendation

- Chilled beams should be pursued on more projects in US
- Would be appropriate to use for RTC project

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

NEC Wire Sizing

- Upsizing wire conductors has the potential to the improve the energy efficiency of buildings
- Wire conductors have resistance which creates voltage drops and uses energy
- Larger conductors have lower resistance than smaller wires
- Analysis determines the feasibility of upsizing wires one size larger than NEC code minimum to reduce energy usage

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- * Canalysian and Basammand
- Conclusion and Recommendations

Redland Tech Center

Calculations

- Circuit No. 12 on lighting panel LP-H
- Powers 2'x4' parabolic troffer luminaires
- 277V
- Connected load = 4,400 VA
- 2-#12 AWG #12 Ground
- Luminaires are approximately 100' from panelboard

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Calculations

- Current in wires = 4,400VA/277V = 15.9 amps
- The first step is to calculate the resistance of #12 wire:
 - For #12 THHN @ 75°C (From NEC Chapter 9, Table 9):
 - $R = 2\Omega/kFT$
 - To correct resistance to 30°C, use NEC Table 8 footnote:
 - $R_2 = 2 [1+0.00323(30-75)] = 1.71 \Omega/kFT$
- The second step is to calculate the power loss for #12 wire:

Power Loss =
$$I^{2*}R = (15.9)^{2*} 1.71*0.1 = 43.0 W$$

- The third step is to calculate energy loss per year for #12 wire: Energy Loss = 43.0 W / 1000W/kW * 12hrs/day * 365days/year = 188 kWh/yr
- Repeat steps for #10wire

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- concresion and necommendations

Redland Tech Center

Calculations

- Resistance of #10 wire:
 - For #10 THHN @ 75°C (From NEC Chapter 9, Table 9):

$$R = 1.2\Omega/kFT$$

• To correct resistance to 30°C, use NEC Table 8 footnote:

$$R_2 = 1.2 [1+0.00323(30-75)] = 1.03 \Omega/kFT$$

• Power loss for #10 wire:

Power Loss =
$$I^{2*}R = (15.9)^{2*} 1.03*0.1 = 26.0 \text{ W}$$

• Energy loss per year for #10 wire:

Savings due to upsizing wire:

```
188-113 = 75 kWh/yr
```

• Dollar savings at \$0.09 per kWh:

```
$6.75/yr
```

• Dollar savings at \$0.09 per kWh: \$6.75/yr

Cost of #12 wire and conduit = \$2.85LF*100' = \$285 Cost of #10 wire and conduit = \$3.03LF*100' = \$303 Cost difference = \$18

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Discounted Payback Period

• Assume MARR = 15%

	Cash Flow	Cost of Funds (15%)	Cumulative Cash Flow
0	(\$18)	\$0	(\$18)
1	\$6.75	(\$2.70)	(\$13.95)
2	\$6.75	(\$2.09)	(\$9.29)
3	\$6.75	(\$1.39)	(\$3.93)
4	\$6.75	(\$0.59)	\$2.23

\$0.09/kWh – 4 year payback

Period	Cash Flow	Cost of Funds (15%)	Cumulative Cash Flow
0	(\$18)	\$0	(\$18)
1	\$10.50	(\$2.70)	(\$10.20)
2	\$10.50	(\$1.53)	(\$1.23)
3	\$10.50	(\$0.18)	\$9.09

\$0.14/kWh – 3 year payback

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Other Findings

- Payback shows wire upsizing is feasible
- Most circuits do not operate at design
- Penn State Campus buildings design capacities typically 3 to 4 times average load
- Wires already upsized several times

- Project Overviev
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendation
- Overtions and Aslance dedecement

Redland Tech Center

Possible Uses of Wire Upsizing

- Locations with constant high loads
- Data center equipment
- Large constant speed motors
- HVAC chillers

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Conclusion

- Wire upsizing feasible
- Savings not drastic
- Payback typically within a few years
- Best uses would be areas with constant high loads
- Data center equipment, large constant speed motors, HVAC chillers

Recommendation

 Apply principle only in areas of building projects with high constant loads

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendation

Redland Tech Center

Actual Construction Sequence

- February 6, 2008 April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

- February 6, 2008 April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

- February 6, 2008 April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Actual Construction Sequence

- February 6, 2008 April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

- February 6, 2008 April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

- No remobilization fees were paid to the Precast Erectors, Inc. because only 1 mobilization charge was stated in contract with Clark Construction
- Precast Erectors PM estimated second mobilization costs were \$70,000
- Precast Erectors absorbed second mobilization costs

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Proposed Construction Sequence

- Erect majority of building in same manner as the actual sequence except leave out south non-load bearing foundation wall instead of corner
- Erect members from inside the building
- Move crane from basement to outside foundation wall through opening in wall and erect last sequence

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Proposed Construction Sequence

- Erect majority of building in same manner as the actual sequence except leave out south non-load bearing foundation wall instead of corner
- Erect members from inside the building
- Move crane from basement to outside foundation wall through opening in wall and erect last sequence

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Ouestions and Acknowledgements

Redland Tech Center

Proposed Construction Sequence

- Erect majority of building in same manner as the actual sequence except leave out south non-load bearing foundation wall instead of corner
- Erect members from inside the building
- Move crane from basement to outside foundation wall through opening in wall and erect last sequence
- February 6, 2008-February 17, 2009; 377 days
- Saves 43 days in construction duration

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendatio
- Questions and Asknowledgement

Redland Tech Center

Cost Impacts

- GCs are reduced
- Precast Erectors would save \$70,000 for the second mobilization costs
- Project cost is not affected

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- concresion and necommendations

Redland Tech Center

Conclusion

- Proposed sequence saves 43 days in construction duration
- Saves Precast Erectors \$70,000 in second mobilization costs
- Does not reduce cost to owner
- Allows Clark Construction to better manage risks

Recommendation

- Use proposed sequence to reduce construction duration, minimize risks on project, allow site work to finish earlier, and save Precast Erectors second mobilization costs
- Would make project more of a success for everyone involved

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical
- Parking Garage Sequencing
- Conclusion and Recommendations

Redland Tech Center

Conclusion

- Chilled beams are a new HVAC technology which has the potential to drastically improve a building's energy efficiency
- Chilled beams can be implemented at RTC BII for \$75,056 with payback period less than 1 year and no schedule impact
- Wire upsizing has the potential to save energy
- Implement in areas with constant high loads
- Proposed sequence for the parking garage saves 43 days on the schedule: costs are not reduced

Recommendation

• All three analysis topics should be used for project

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanica
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

Questions?

Acknowledgements

- Penn State Architectural Engineering Faculty
- Clark Construction
 Jim Martinoski
 Erin Gardner
 John Neuenschwander
- Syska Hennessey Group
 Alla Ketsnelson
- WSP Flack + Kurtz
 Albert Flaherty
- Tindall Corporation

 Jeff Lepard
- Friends and Family